

Building Systems for the "Real" World

What is the Problem?

- Capability sustainment
- Affordable life cycle
- Low upgrade cycle time
- Technology refreshable despite obsolescence

Multi-dimensional Trade Space!

- Real-time
- Distributed
- Complex
- Mission critical
- Long life
- Cost conscious
- Evolving
- High performance

High Performance Distributed Computing

DARPA Goal:

Transition Computing Technology to Military

HiPer-D Premise:

New Computer Program & System Architecture Required to Fully Exploit **COTS Technology**

HiPer-D Quorum

Navy Team

Industry

Navy Goal:

Provide Increased Capacity & Scalability

Navy Real-time **Systems**

DARPA Technologies

- Advanced computers
- Operating systems
- Advanced networks
- Low latency protocols
- Quality-of-service middleware
- Resource management

Architecture Concepts

- Distributed processing
- Open systems
- **Portability**
- Scalability
- Fault tolerance
- Shared resource mgt.
- Self-instrumented

Navy Benefits

- Load-invariant tactical performance
- Information access
- Mission flexibility
- Continuous availability
- Rapid upgrades
- Low ownership cost

SYSTEM ARCHITECTURE VIEWS

FUNCTIONAL VIEW

TECHNOLOGY VIEW

PHYSICAL VIEW

SOFTWARE VIEW

QoS REFERENCE ARCHITECTURE

GUIDANCE DOCUMENT

Computer Program Design

- Component partitioning
- Portability
- Location transparency
- Client-server
- Data distribution
- State data coherency
- Computational flow
- Fault tolerance
- Scalability
- Real-time performance
- Process, thread & memory mgt.
- Data flow management
- Track data distribution
- Legacy capture

Computing Technology Base

- Cabling and cabinets
- Information transfer
- Computing resources
- Peripherals
- Middleware
- Resource management
- Instrumentation
- Failure management
- Information assurance
- Time services
- Programming/language support facilities
- Requirements and design tools, methodologies and processes

CHALLENGES FOR THE FUTURE...

Fault Tolerance

- Faster fault detection and isolation (<< 1 sec), e.g. via hardware support for fault detection and reconfiguration
- Integrated failure management across technology base

Middleware

- Faster, scalable performance during join, leave & recovery events
- Integrated products with full range of middleware functionality
- Middleware for higher performance domains

Resource Management

- Optimal, stable system-wide dynamic allocation algorithms
- Run-time schedulability and stability analysis for mixed real-time systems (hard, soft, event)
- Incorporation of network QoS and routing management

Security

- Intrusion detection, authentication, mgt. of security domains, etc.
- Integration with other technologies, e.g. Resource Management

System

- Support for system end-to-end performance requirements
- Certification methods for dynamically allocated systems